Ergodic and Spectral Analysis of Certain Infinite Measure Preserving Transformations
نویسنده
چکیده
0. Introduction. Throughout this paper T will denote a measure preserving transformation on a cr-finite infinite measure space (X, (B, m) which is point isomorphic with the Lebesgue measure space of the real line. Unless otherwise stated, T will be one-one. Equations involving functions or sets will always be interpreted modulo sets of measure zero. T is said to be ergodic if T~1E = E, ££(B, implies either mE = 0 or m (X-E)=0. P. R. Halmos [l ] has posed the problem of characterising spectrally the property of ergodicity for cr-finite infinite measure preserving transformations. Our purpose is to show that the ergodicity of such a transformation is not a spectral property. Let Ut denote the induced unitary operator of L2(X,(S>,m) onto itself defined by
منابع مشابه
Entropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملJa n 20 08 POISSON SUSPENSIONS AND INFINITE ERGODIC THEORY
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure preserving ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar l...
متن کاملar X iv : 0 70 5 . 21 48 v 1 [ m at h . D S ] 1 5 M ay 2 00 7 PREDICTABILITY , ENTROPY AND INFORMATION OF INFINITE TRANSFORMATIONS
We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...
متن کاملPoisson suspensions and infinite ergodic theory
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaus...
متن کاملPredictability, Entropy and Information of Infinite Transformations
We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...
متن کامل